Posted: 6/20/2023

Engineering of Biomedical Systems

The Engineering of Biomedical Systems program is part of the Engineering Biology and Health cluster, which also includes: 1) the Biophotonics program; 2) the Biosensing program; 3) the Cellular and Biochemical Engineering program; and 4) the Disability and Rehabilitation Engineering program.

The goal of the Engineering of Biomedical Systems (EBMS) program is to provide opportunities for fundamental and transformative research projects that integrate engineering and life sciences to solve biomedical problems and serve humanity in the long term.  Projects are expected to use an engineering framework (for example, design or modeling) that supports increased understanding of physiological or pathophysiological processes. Projects must include objectives that advance both engineering and biomedical sciences.

Projects may include: methods, models, and enabling tools applied to understand or control living systems; fundamental improvements in deriving information from cells, tissues, organs, and organ systems; or new approaches to the design of systems that include both living and non-living components for eventual medical use in the long term.

Full Proposal Accepted Anytime
 

Proposals submitted to other program announcements and solicitations, including the Faculty Early Career Development (CAREER) program, must meet their respective deadlines; please refer to the deadline dates specified in the appropriate announcement or solicitation. Proposals for EArly-concept Grants for Exploratory Research (EAGER) or Rapid Response Research (RAPID) can be submitted at any time but Principal Investigators (PIs) must contact the cognizant program director prior to submission. Proposals for supplements or workshops can be submitted at any time, and PIs are encouraged to contact the cognizant program director prior to submission.

Areas of Interest

The EBMS program supports fundamental and transformative research in the following areas of biomedical engineering:

  • Development of validated models (living or computational) of healthy and pathological tissues and organ systems that can support improved fundamental understanding of these systems or that could be applied in the future for development and testing of medical interventions;
  • Design and validation of systems that integrate living and non-living components for improved understanding of physiology that could be applied in the future for diagnosis, monitoring, and treatment of disease or injury;
  • Design and subsequent application of technologies and tools to investigate fundamental physiological and pathophysiological processes;
  • Advanced biomanufacturing of three-dimensional tissues and organs; and
  • Application of engineering tools and principles, including mathematical modeling, to quantitatively study the immune system in health and disease and to develop techniques for controlling and modulating a host’s immune response to challenges such as infectious diseases, cancer, implants, autoimmune disorders, wounds, etc.

The long-term impact of the projects can be related to effective disease diagnosis and/or treatment, or improved health care delivery. However, immediate goals should focus on improved fundamental understanding of cell and tissue function in normal or pathological conditions and advancing biomedical engineering.

Innovative proposals outside of these specific areas of biomedical engineering may be considered. However, prior to submission, it is strongly recommended that the PIs contact the program director to avoid the possibility of the proposal being returned without review. Related programs also fund biomedical engineering research, and PIs are encouraged to examine these to find the appropriate program for submission.

The EBMS program does not support proposals having as their central theme drug design and delivery, the development of biomedical devices that do not include a living biological component, or the development of animal models of disease. For consideration by the EBMS program, proposals that advance the design of tools or technologies should also apply those technologies to advance knowledge in biomedical science.  NSF does not support clinical trials; however, feasibility studies involving human volunteers may be supported if appropriate to the project objectives.

Projects with a central focus on design or optimization of a device, material, algorithm, or process alone without exploring new fundamental biomedical science are not appropriate for the EBMS program. Furthermore, although research on biomaterials, cellular biomechanics, manufacturing systems, or algorithm/device design may constitute a part of the proposed studies, such research can be more appropriately targeted to other NSF programs:

  • Projects that aim to improve protein engineering or cellular biomanufacturing - either manufacturing cells or cell-derived products - should consider the Cellular and Biochemical Engineering (CBE) program.
  • Projects that focus on the development and application of microphysiological systems that model functional recovery related to a specific human disability or injury mechanism should consider the Disability and Rehabilitation Engineering (DARE) program.
  • Biomaterials-focused projects should consider the Biomaterials (BMAT) program in the Division of Materials Research (DMR).
  • Cellular and tissue biomechanics projects should consider the Biomechanics and Mechanobiology (BMMB) program in the Division of Civil, Mechanical, and Manufacturing Innovation (CMMI). 
  • Manufacturing systems proposals should consider the Advanced Manufacturing (AM) program in the Division of Civil, Mechanical, and Manufacturing Innovation (CMMI). 
  • Innovative research on signal processing techniques or dynamic biosensing systems should consider the Communications, Circuits, and Sensing-Systems (CCSS) program in the Division of Electrical, Communications and Cyber Systems (ECCS).
  • Innovative research on novel devices based on the principles of electronics, optics and photonics, optoelectronics, magnetics, opto- and electromechanics, electromagnetics, and related physical phenomena, also including material-device interaction, should consider the Electronics, Photonics and Magnetic Devices (EPMD) Program in the Division of Electrical, Communications and Cyber Systems (ECCS).
Amount Description

The duration of unsolicited proposal awards in CBET is generally up to three years.  Single-investigator award budgets typically include support for one graduate student (or equivalent) and up to one month of PI time per year (awards for multiple investigator projects are typically larger). Proposal budgets that are much larger than typical should be discussed with the program director prior to submission.